p-group, metabelian, nilpotent (class 2), monomial
Aliases: C23.727C24, C24.109C23, C22.5002+ 1+4, C22.3822- 1+4, C23.Q8⋊97C2, C23.4Q8⋊68C2, C23.107(C4○D4), (C22×C4).238C23, (C23×C4).183C22, C23.8Q8⋊144C2, C23.11D4⋊133C2, C23.10D4.74C2, C23.23D4.78C2, (C22×D4).302C22, C23.83C23⋊135C2, C23.81C23⋊136C2, C2.116(C22.32C24), C2.50(C22.54C24), C2.C42.430C22, C2.55(C22.56C24), C2.63(C22.57C24), C2.124(C22.33C24), (C2×C4⋊C4).536C22, C22.575(C2×C4○D4), (C2×C22⋊C4).345C22, SmallGroup(128,1559)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C23.727C24
G = < a,b,c,d,e,f,g | a2=b2=c2=f2=g2=1, d2=ca=ac, e2=a, ab=ba, ede-1=ad=da, ae=ea, gfg=af=fa, ag=ga, bc=cb, fdf=bd=db, be=eb, bf=fb, bg=gb, cd=dc, fef=ce=ec, cf=fc, cg=gc, dg=gd, geg=abe >
Subgroups: 452 in 207 conjugacy classes, 84 normal (82 characteristic)
C1, C2, C2, C4, C22, C22, C2×C4, D4, C23, C23, C23, C22⋊C4, C4⋊C4, C22×C4, C22×C4, C2×D4, C24, C2.C42, C2×C22⋊C4, C2×C4⋊C4, C23×C4, C22×D4, C23.8Q8, C23.23D4, C23.10D4, C23.Q8, C23.11D4, C23.81C23, C23.4Q8, C23.83C23, C23.727C24
Quotients: C1, C2, C22, C23, C4○D4, C24, C2×C4○D4, 2+ 1+4, 2- 1+4, C22.32C24, C22.33C24, C22.54C24, C22.56C24, C22.57C24, C23.727C24
Character table of C23.727C24
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 2H | 2I | 2J | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 4I | 4J | 4K | 4L | 4M | 4N | 4O | |
size | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 4 | 4 | 8 | 4 | 4 | 4 | 4 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | 1 | -1 | 1 | -1 | 1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | 1 | -1 | -1 | 1 | 1 | -1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | linear of order 2 |
ρ5 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | -1 | 1 | 1 | -1 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | linear of order 2 |
ρ6 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | linear of order 2 |
ρ7 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | -1 | linear of order 2 |
ρ8 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | linear of order 2 |
ρ9 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | linear of order 2 |
ρ10 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | linear of order 2 |
ρ11 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | linear of order 2 |
ρ12 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ13 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | -1 | -1 | -1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | linear of order 2 |
ρ14 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | 1 | linear of order 2 |
ρ15 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | linear of order 2 |
ρ16 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | -1 | linear of order 2 |
ρ17 | 2 | -2 | 2 | -2 | 2 | -2 | 2 | -2 | 2 | -2 | 0 | 2i | -2i | 2i | -2i | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C4○D4 |
ρ18 | 2 | -2 | 2 | -2 | 2 | -2 | 2 | -2 | 2 | -2 | 0 | -2i | 2i | -2i | 2i | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C4○D4 |
ρ19 | 2 | -2 | 2 | -2 | 2 | -2 | 2 | -2 | -2 | 2 | 0 | 2i | -2i | -2i | 2i | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C4○D4 |
ρ20 | 2 | -2 | 2 | -2 | 2 | -2 | 2 | -2 | -2 | 2 | 0 | -2i | 2i | 2i | -2i | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C4○D4 |
ρ21 | 4 | 4 | -4 | -4 | 4 | -4 | -4 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from 2+ 1+4 |
ρ22 | 4 | -4 | 4 | -4 | -4 | 4 | -4 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from 2+ 1+4 |
ρ23 | 4 | -4 | -4 | 4 | 4 | 4 | -4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from 2+ 1+4 |
ρ24 | 4 | 4 | -4 | -4 | -4 | 4 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from 2+ 1+4 |
ρ25 | 4 | -4 | -4 | 4 | -4 | -4 | 4 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic lifted from 2- 1+4, Schur index 2 |
ρ26 | 4 | 4 | 4 | 4 | -4 | -4 | -4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic lifted from 2- 1+4, Schur index 2 |
(1 45)(2 46)(3 47)(4 48)(5 63)(6 64)(7 61)(8 62)(9 23)(10 24)(11 21)(12 22)(13 20)(14 17)(15 18)(16 19)(25 30)(26 31)(27 32)(28 29)(33 38)(34 39)(35 40)(36 37)(41 49)(42 50)(43 51)(44 52)(53 60)(54 57)(55 58)(56 59)
(1 58)(2 59)(3 60)(4 57)(5 52)(6 49)(7 50)(8 51)(9 34)(10 35)(11 36)(12 33)(13 31)(14 32)(15 29)(16 30)(17 27)(18 28)(19 25)(20 26)(21 37)(22 38)(23 39)(24 40)(41 64)(42 61)(43 62)(44 63)(45 55)(46 56)(47 53)(48 54)
(1 47)(2 48)(3 45)(4 46)(5 61)(6 62)(7 63)(8 64)(9 21)(10 22)(11 23)(12 24)(13 18)(14 19)(15 20)(16 17)(25 32)(26 29)(27 30)(28 31)(33 40)(34 37)(35 38)(36 39)(41 51)(42 52)(43 49)(44 50)(53 58)(54 59)(55 60)(56 57)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)(33 34 35 36)(37 38 39 40)(41 42 43 44)(45 46 47 48)(49 50 51 52)(53 54 55 56)(57 58 59 60)(61 62 63 64)
(1 44 45 52)(2 49 46 41)(3 42 47 50)(4 51 48 43)(5 58 63 55)(6 56 64 59)(7 60 61 53)(8 54 62 57)(9 18 23 15)(10 16 24 19)(11 20 21 13)(12 14 22 17)(25 35 30 40)(26 37 31 36)(27 33 32 38)(28 39 29 34)
(2 59)(4 57)(5 61)(6 43)(7 63)(8 41)(9 11)(10 33)(12 35)(13 20)(14 27)(15 18)(16 25)(17 32)(19 30)(21 23)(22 40)(24 38)(26 31)(28 29)(34 36)(37 39)(42 52)(44 50)(46 56)(48 54)(49 62)(51 64)
(1 13)(2 14)(3 15)(4 16)(5 11)(6 12)(7 9)(8 10)(17 46)(18 47)(19 48)(20 45)(21 63)(22 64)(23 61)(24 62)(25 54)(26 55)(27 56)(28 53)(29 60)(30 57)(31 58)(32 59)(33 49)(34 50)(35 51)(36 52)(37 44)(38 41)(39 42)(40 43)
G:=sub<Sym(64)| (1,45)(2,46)(3,47)(4,48)(5,63)(6,64)(7,61)(8,62)(9,23)(10,24)(11,21)(12,22)(13,20)(14,17)(15,18)(16,19)(25,30)(26,31)(27,32)(28,29)(33,38)(34,39)(35,40)(36,37)(41,49)(42,50)(43,51)(44,52)(53,60)(54,57)(55,58)(56,59), (1,58)(2,59)(3,60)(4,57)(5,52)(6,49)(7,50)(8,51)(9,34)(10,35)(11,36)(12,33)(13,31)(14,32)(15,29)(16,30)(17,27)(18,28)(19,25)(20,26)(21,37)(22,38)(23,39)(24,40)(41,64)(42,61)(43,62)(44,63)(45,55)(46,56)(47,53)(48,54), (1,47)(2,48)(3,45)(4,46)(5,61)(6,62)(7,63)(8,64)(9,21)(10,22)(11,23)(12,24)(13,18)(14,19)(15,20)(16,17)(25,32)(26,29)(27,30)(28,31)(33,40)(34,37)(35,38)(36,39)(41,51)(42,52)(43,49)(44,50)(53,58)(54,59)(55,60)(56,57), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64), (1,44,45,52)(2,49,46,41)(3,42,47,50)(4,51,48,43)(5,58,63,55)(6,56,64,59)(7,60,61,53)(8,54,62,57)(9,18,23,15)(10,16,24,19)(11,20,21,13)(12,14,22,17)(25,35,30,40)(26,37,31,36)(27,33,32,38)(28,39,29,34), (2,59)(4,57)(5,61)(6,43)(7,63)(8,41)(9,11)(10,33)(12,35)(13,20)(14,27)(15,18)(16,25)(17,32)(19,30)(21,23)(22,40)(24,38)(26,31)(28,29)(34,36)(37,39)(42,52)(44,50)(46,56)(48,54)(49,62)(51,64), (1,13)(2,14)(3,15)(4,16)(5,11)(6,12)(7,9)(8,10)(17,46)(18,47)(19,48)(20,45)(21,63)(22,64)(23,61)(24,62)(25,54)(26,55)(27,56)(28,53)(29,60)(30,57)(31,58)(32,59)(33,49)(34,50)(35,51)(36,52)(37,44)(38,41)(39,42)(40,43)>;
G:=Group( (1,45)(2,46)(3,47)(4,48)(5,63)(6,64)(7,61)(8,62)(9,23)(10,24)(11,21)(12,22)(13,20)(14,17)(15,18)(16,19)(25,30)(26,31)(27,32)(28,29)(33,38)(34,39)(35,40)(36,37)(41,49)(42,50)(43,51)(44,52)(53,60)(54,57)(55,58)(56,59), (1,58)(2,59)(3,60)(4,57)(5,52)(6,49)(7,50)(8,51)(9,34)(10,35)(11,36)(12,33)(13,31)(14,32)(15,29)(16,30)(17,27)(18,28)(19,25)(20,26)(21,37)(22,38)(23,39)(24,40)(41,64)(42,61)(43,62)(44,63)(45,55)(46,56)(47,53)(48,54), (1,47)(2,48)(3,45)(4,46)(5,61)(6,62)(7,63)(8,64)(9,21)(10,22)(11,23)(12,24)(13,18)(14,19)(15,20)(16,17)(25,32)(26,29)(27,30)(28,31)(33,40)(34,37)(35,38)(36,39)(41,51)(42,52)(43,49)(44,50)(53,58)(54,59)(55,60)(56,57), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64), (1,44,45,52)(2,49,46,41)(3,42,47,50)(4,51,48,43)(5,58,63,55)(6,56,64,59)(7,60,61,53)(8,54,62,57)(9,18,23,15)(10,16,24,19)(11,20,21,13)(12,14,22,17)(25,35,30,40)(26,37,31,36)(27,33,32,38)(28,39,29,34), (2,59)(4,57)(5,61)(6,43)(7,63)(8,41)(9,11)(10,33)(12,35)(13,20)(14,27)(15,18)(16,25)(17,32)(19,30)(21,23)(22,40)(24,38)(26,31)(28,29)(34,36)(37,39)(42,52)(44,50)(46,56)(48,54)(49,62)(51,64), (1,13)(2,14)(3,15)(4,16)(5,11)(6,12)(7,9)(8,10)(17,46)(18,47)(19,48)(20,45)(21,63)(22,64)(23,61)(24,62)(25,54)(26,55)(27,56)(28,53)(29,60)(30,57)(31,58)(32,59)(33,49)(34,50)(35,51)(36,52)(37,44)(38,41)(39,42)(40,43) );
G=PermutationGroup([[(1,45),(2,46),(3,47),(4,48),(5,63),(6,64),(7,61),(8,62),(9,23),(10,24),(11,21),(12,22),(13,20),(14,17),(15,18),(16,19),(25,30),(26,31),(27,32),(28,29),(33,38),(34,39),(35,40),(36,37),(41,49),(42,50),(43,51),(44,52),(53,60),(54,57),(55,58),(56,59)], [(1,58),(2,59),(3,60),(4,57),(5,52),(6,49),(7,50),(8,51),(9,34),(10,35),(11,36),(12,33),(13,31),(14,32),(15,29),(16,30),(17,27),(18,28),(19,25),(20,26),(21,37),(22,38),(23,39),(24,40),(41,64),(42,61),(43,62),(44,63),(45,55),(46,56),(47,53),(48,54)], [(1,47),(2,48),(3,45),(4,46),(5,61),(6,62),(7,63),(8,64),(9,21),(10,22),(11,23),(12,24),(13,18),(14,19),(15,20),(16,17),(25,32),(26,29),(27,30),(28,31),(33,40),(34,37),(35,38),(36,39),(41,51),(42,52),(43,49),(44,50),(53,58),(54,59),(55,60),(56,57)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32),(33,34,35,36),(37,38,39,40),(41,42,43,44),(45,46,47,48),(49,50,51,52),(53,54,55,56),(57,58,59,60),(61,62,63,64)], [(1,44,45,52),(2,49,46,41),(3,42,47,50),(4,51,48,43),(5,58,63,55),(6,56,64,59),(7,60,61,53),(8,54,62,57),(9,18,23,15),(10,16,24,19),(11,20,21,13),(12,14,22,17),(25,35,30,40),(26,37,31,36),(27,33,32,38),(28,39,29,34)], [(2,59),(4,57),(5,61),(6,43),(7,63),(8,41),(9,11),(10,33),(12,35),(13,20),(14,27),(15,18),(16,25),(17,32),(19,30),(21,23),(22,40),(24,38),(26,31),(28,29),(34,36),(37,39),(42,52),(44,50),(46,56),(48,54),(49,62),(51,64)], [(1,13),(2,14),(3,15),(4,16),(5,11),(6,12),(7,9),(8,10),(17,46),(18,47),(19,48),(20,45),(21,63),(22,64),(23,61),(24,62),(25,54),(26,55),(27,56),(28,53),(29,60),(30,57),(31,58),(32,59),(33,49),(34,50),(35,51),(36,52),(37,44),(38,41),(39,42),(40,43)]])
Matrix representation of C23.727C24 ►in GL10(𝔽5)
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 4 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 4 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 4 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 4 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 4 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 4 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 4 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 4 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 4 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 4 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 4 |
2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 3 | 4 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 4 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 3 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 3 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 3 | 3 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 3 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 2 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 3 | 0 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 4 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 4 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 4 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 4 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 4 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 4 | 0 |
G:=sub<GL(10,GF(5))| [1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,4],[1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1],[4,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,4],[2,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,2,0,0,0,0,0,0,0,1,3,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,4],[0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,2,1,0,0,0,0,0,0,0,3,0,0,1,0,0,0,0,0,0,3,0,0,3,0,0,0,0,0,0,0,3,2,0],[1,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0] >;
C23.727C24 in GAP, Magma, Sage, TeX
C_2^3._{727}C_2^4
% in TeX
G:=Group("C2^3.727C2^4");
// GroupNames label
G:=SmallGroup(128,1559);
// by ID
G=gap.SmallGroup(128,1559);
# by ID
G:=PCGroup([7,-2,2,2,2,-2,2,2,560,253,120,758,723,794,185]);
// Polycyclic
G:=Group<a,b,c,d,e,f,g|a^2=b^2=c^2=f^2=g^2=1,d^2=c*a=a*c,e^2=a,a*b=b*a,e*d*e^-1=a*d=d*a,a*e=e*a,g*f*g=a*f=f*a,a*g=g*a,b*c=c*b,f*d*f=b*d=d*b,b*e=e*b,b*f=f*b,b*g=g*b,c*d=d*c,f*e*f=c*e=e*c,c*f=f*c,c*g=g*c,d*g=g*d,g*e*g=a*b*e>;
// generators/relations
Export