Copied to
clipboard

G = C23.727C24order 128 = 27

444th central stem extension by C23 of C24

p-group, metabelian, nilpotent (class 2), monomial

Aliases: C23.727C24, C24.109C23, C22.5002+ 1+4, C22.3822- 1+4, C23.Q897C2, C23.4Q868C2, C23.107(C4○D4), (C22×C4).238C23, (C23×C4).183C22, C23.8Q8144C2, C23.11D4133C2, C23.10D4.74C2, C23.23D4.78C2, (C22×D4).302C22, C23.83C23135C2, C23.81C23136C2, C2.116(C22.32C24), C2.50(C22.54C24), C2.C42.430C22, C2.55(C22.56C24), C2.63(C22.57C24), C2.124(C22.33C24), (C2×C4⋊C4).536C22, C22.575(C2×C4○D4), (C2×C22⋊C4).345C22, SmallGroup(128,1559)

Series: Derived Chief Lower central Upper central Jennings

C1C23 — C23.727C24
C1C2C22C23C24C22×D4C23.10D4 — C23.727C24
C1C23 — C23.727C24
C1C23 — C23.727C24
C1C23 — C23.727C24

Generators and relations for C23.727C24
 G = < a,b,c,d,e,f,g | a2=b2=c2=f2=g2=1, d2=ca=ac, e2=a, ab=ba, ede-1=ad=da, ae=ea, gfg=af=fa, ag=ga, bc=cb, fdf=bd=db, be=eb, bf=fb, bg=gb, cd=dc, fef=ce=ec, cf=fc, cg=gc, dg=gd, geg=abe >

Subgroups: 452 in 207 conjugacy classes, 84 normal (82 characteristic)
C1, C2, C2, C4, C22, C22, C2×C4, D4, C23, C23, C23, C22⋊C4, C4⋊C4, C22×C4, C22×C4, C2×D4, C24, C2.C42, C2×C22⋊C4, C2×C4⋊C4, C23×C4, C22×D4, C23.8Q8, C23.23D4, C23.10D4, C23.Q8, C23.11D4, C23.81C23, C23.4Q8, C23.83C23, C23.727C24
Quotients: C1, C2, C22, C23, C4○D4, C24, C2×C4○D4, 2+ 1+4, 2- 1+4, C22.32C24, C22.33C24, C22.54C24, C22.56C24, C22.57C24, C23.727C24

Character table of C23.727C24

 class 12A2B2C2D2E2F2G2H2I2J4A4B4C4D4E4F4G4H4I4J4K4L4M4N4O
 size 11111111448444488888888888
ρ111111111111111111111111111    trivial
ρ211111111-1-11-1-111-1-11-1-111-11-11    linear of order 2
ρ31111111111-11111-11-1-1-11-1-111-1    linear of order 2
ρ411111111-1-1-1-1-1111-1-1111-111-1-1    linear of order 2
ρ511111111-1-1-1-1-111-111-11-1-11-111    linear of order 2
ρ61111111111-111111-111-1-1-1-1-1-11    linear of order 2
ρ711111111-1-11-1-11111-11-1-11-1-11-1    linear of order 2
ρ8111111111111111-1-1-1-11-111-1-1-1    linear of order 2
ρ911111111-1-1-111-1-1-1-1-11111-1-111    linear of order 2
ρ101111111111-1-1-1-1-111-1-1-1111-1-11    linear of order 2
ρ1111111111-1-1111-1-11-11-1-11-11-11-1    linear of order 2
ρ1211111111111-1-1-1-1-111111-1-1-1-1-1    linear of order 2
ρ1311111111111-1-1-1-11-1-1-11-1-1-1111    linear of order 2
ρ1411111111-1-1111-1-1-11-11-1-1-111-11    linear of order 2
ρ151111111111-1-1-1-1-1-1-111-1-11111-1    linear of order 2
ρ1611111111-1-1-111-1-1111-11-11-11-1-1    linear of order 2
ρ172-22-22-22-22-202i-2i2i-2i00000000000    complex lifted from C4○D4
ρ182-22-22-22-22-20-2i2i-2i2i00000000000    complex lifted from C4○D4
ρ192-22-22-22-2-2202i-2i-2i2i00000000000    complex lifted from C4○D4
ρ202-22-22-22-2-220-2i2i2i-2i00000000000    complex lifted from C4○D4
ρ2144-4-44-4-44000000000000000000    orthogonal lifted from 2+ 1+4
ρ224-44-4-44-44000000000000000000    orthogonal lifted from 2+ 1+4
ρ234-4-4444-4-4000000000000000000    orthogonal lifted from 2+ 1+4
ρ2444-4-4-444-4000000000000000000    orthogonal lifted from 2+ 1+4
ρ254-4-44-4-444000000000000000000    symplectic lifted from 2- 1+4, Schur index 2
ρ264444-4-4-4-4000000000000000000    symplectic lifted from 2- 1+4, Schur index 2

Smallest permutation representation of C23.727C24
On 64 points
Generators in S64
(1 45)(2 46)(3 47)(4 48)(5 63)(6 64)(7 61)(8 62)(9 23)(10 24)(11 21)(12 22)(13 20)(14 17)(15 18)(16 19)(25 30)(26 31)(27 32)(28 29)(33 38)(34 39)(35 40)(36 37)(41 49)(42 50)(43 51)(44 52)(53 60)(54 57)(55 58)(56 59)
(1 58)(2 59)(3 60)(4 57)(5 52)(6 49)(7 50)(8 51)(9 34)(10 35)(11 36)(12 33)(13 31)(14 32)(15 29)(16 30)(17 27)(18 28)(19 25)(20 26)(21 37)(22 38)(23 39)(24 40)(41 64)(42 61)(43 62)(44 63)(45 55)(46 56)(47 53)(48 54)
(1 47)(2 48)(3 45)(4 46)(5 61)(6 62)(7 63)(8 64)(9 21)(10 22)(11 23)(12 24)(13 18)(14 19)(15 20)(16 17)(25 32)(26 29)(27 30)(28 31)(33 40)(34 37)(35 38)(36 39)(41 51)(42 52)(43 49)(44 50)(53 58)(54 59)(55 60)(56 57)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)(33 34 35 36)(37 38 39 40)(41 42 43 44)(45 46 47 48)(49 50 51 52)(53 54 55 56)(57 58 59 60)(61 62 63 64)
(1 44 45 52)(2 49 46 41)(3 42 47 50)(4 51 48 43)(5 58 63 55)(6 56 64 59)(7 60 61 53)(8 54 62 57)(9 18 23 15)(10 16 24 19)(11 20 21 13)(12 14 22 17)(25 35 30 40)(26 37 31 36)(27 33 32 38)(28 39 29 34)
(2 59)(4 57)(5 61)(6 43)(7 63)(8 41)(9 11)(10 33)(12 35)(13 20)(14 27)(15 18)(16 25)(17 32)(19 30)(21 23)(22 40)(24 38)(26 31)(28 29)(34 36)(37 39)(42 52)(44 50)(46 56)(48 54)(49 62)(51 64)
(1 13)(2 14)(3 15)(4 16)(5 11)(6 12)(7 9)(8 10)(17 46)(18 47)(19 48)(20 45)(21 63)(22 64)(23 61)(24 62)(25 54)(26 55)(27 56)(28 53)(29 60)(30 57)(31 58)(32 59)(33 49)(34 50)(35 51)(36 52)(37 44)(38 41)(39 42)(40 43)

G:=sub<Sym(64)| (1,45)(2,46)(3,47)(4,48)(5,63)(6,64)(7,61)(8,62)(9,23)(10,24)(11,21)(12,22)(13,20)(14,17)(15,18)(16,19)(25,30)(26,31)(27,32)(28,29)(33,38)(34,39)(35,40)(36,37)(41,49)(42,50)(43,51)(44,52)(53,60)(54,57)(55,58)(56,59), (1,58)(2,59)(3,60)(4,57)(5,52)(6,49)(7,50)(8,51)(9,34)(10,35)(11,36)(12,33)(13,31)(14,32)(15,29)(16,30)(17,27)(18,28)(19,25)(20,26)(21,37)(22,38)(23,39)(24,40)(41,64)(42,61)(43,62)(44,63)(45,55)(46,56)(47,53)(48,54), (1,47)(2,48)(3,45)(4,46)(5,61)(6,62)(7,63)(8,64)(9,21)(10,22)(11,23)(12,24)(13,18)(14,19)(15,20)(16,17)(25,32)(26,29)(27,30)(28,31)(33,40)(34,37)(35,38)(36,39)(41,51)(42,52)(43,49)(44,50)(53,58)(54,59)(55,60)(56,57), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64), (1,44,45,52)(2,49,46,41)(3,42,47,50)(4,51,48,43)(5,58,63,55)(6,56,64,59)(7,60,61,53)(8,54,62,57)(9,18,23,15)(10,16,24,19)(11,20,21,13)(12,14,22,17)(25,35,30,40)(26,37,31,36)(27,33,32,38)(28,39,29,34), (2,59)(4,57)(5,61)(6,43)(7,63)(8,41)(9,11)(10,33)(12,35)(13,20)(14,27)(15,18)(16,25)(17,32)(19,30)(21,23)(22,40)(24,38)(26,31)(28,29)(34,36)(37,39)(42,52)(44,50)(46,56)(48,54)(49,62)(51,64), (1,13)(2,14)(3,15)(4,16)(5,11)(6,12)(7,9)(8,10)(17,46)(18,47)(19,48)(20,45)(21,63)(22,64)(23,61)(24,62)(25,54)(26,55)(27,56)(28,53)(29,60)(30,57)(31,58)(32,59)(33,49)(34,50)(35,51)(36,52)(37,44)(38,41)(39,42)(40,43)>;

G:=Group( (1,45)(2,46)(3,47)(4,48)(5,63)(6,64)(7,61)(8,62)(9,23)(10,24)(11,21)(12,22)(13,20)(14,17)(15,18)(16,19)(25,30)(26,31)(27,32)(28,29)(33,38)(34,39)(35,40)(36,37)(41,49)(42,50)(43,51)(44,52)(53,60)(54,57)(55,58)(56,59), (1,58)(2,59)(3,60)(4,57)(5,52)(6,49)(7,50)(8,51)(9,34)(10,35)(11,36)(12,33)(13,31)(14,32)(15,29)(16,30)(17,27)(18,28)(19,25)(20,26)(21,37)(22,38)(23,39)(24,40)(41,64)(42,61)(43,62)(44,63)(45,55)(46,56)(47,53)(48,54), (1,47)(2,48)(3,45)(4,46)(5,61)(6,62)(7,63)(8,64)(9,21)(10,22)(11,23)(12,24)(13,18)(14,19)(15,20)(16,17)(25,32)(26,29)(27,30)(28,31)(33,40)(34,37)(35,38)(36,39)(41,51)(42,52)(43,49)(44,50)(53,58)(54,59)(55,60)(56,57), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64), (1,44,45,52)(2,49,46,41)(3,42,47,50)(4,51,48,43)(5,58,63,55)(6,56,64,59)(7,60,61,53)(8,54,62,57)(9,18,23,15)(10,16,24,19)(11,20,21,13)(12,14,22,17)(25,35,30,40)(26,37,31,36)(27,33,32,38)(28,39,29,34), (2,59)(4,57)(5,61)(6,43)(7,63)(8,41)(9,11)(10,33)(12,35)(13,20)(14,27)(15,18)(16,25)(17,32)(19,30)(21,23)(22,40)(24,38)(26,31)(28,29)(34,36)(37,39)(42,52)(44,50)(46,56)(48,54)(49,62)(51,64), (1,13)(2,14)(3,15)(4,16)(5,11)(6,12)(7,9)(8,10)(17,46)(18,47)(19,48)(20,45)(21,63)(22,64)(23,61)(24,62)(25,54)(26,55)(27,56)(28,53)(29,60)(30,57)(31,58)(32,59)(33,49)(34,50)(35,51)(36,52)(37,44)(38,41)(39,42)(40,43) );

G=PermutationGroup([[(1,45),(2,46),(3,47),(4,48),(5,63),(6,64),(7,61),(8,62),(9,23),(10,24),(11,21),(12,22),(13,20),(14,17),(15,18),(16,19),(25,30),(26,31),(27,32),(28,29),(33,38),(34,39),(35,40),(36,37),(41,49),(42,50),(43,51),(44,52),(53,60),(54,57),(55,58),(56,59)], [(1,58),(2,59),(3,60),(4,57),(5,52),(6,49),(7,50),(8,51),(9,34),(10,35),(11,36),(12,33),(13,31),(14,32),(15,29),(16,30),(17,27),(18,28),(19,25),(20,26),(21,37),(22,38),(23,39),(24,40),(41,64),(42,61),(43,62),(44,63),(45,55),(46,56),(47,53),(48,54)], [(1,47),(2,48),(3,45),(4,46),(5,61),(6,62),(7,63),(8,64),(9,21),(10,22),(11,23),(12,24),(13,18),(14,19),(15,20),(16,17),(25,32),(26,29),(27,30),(28,31),(33,40),(34,37),(35,38),(36,39),(41,51),(42,52),(43,49),(44,50),(53,58),(54,59),(55,60),(56,57)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32),(33,34,35,36),(37,38,39,40),(41,42,43,44),(45,46,47,48),(49,50,51,52),(53,54,55,56),(57,58,59,60),(61,62,63,64)], [(1,44,45,52),(2,49,46,41),(3,42,47,50),(4,51,48,43),(5,58,63,55),(6,56,64,59),(7,60,61,53),(8,54,62,57),(9,18,23,15),(10,16,24,19),(11,20,21,13),(12,14,22,17),(25,35,30,40),(26,37,31,36),(27,33,32,38),(28,39,29,34)], [(2,59),(4,57),(5,61),(6,43),(7,63),(8,41),(9,11),(10,33),(12,35),(13,20),(14,27),(15,18),(16,25),(17,32),(19,30),(21,23),(22,40),(24,38),(26,31),(28,29),(34,36),(37,39),(42,52),(44,50),(46,56),(48,54),(49,62),(51,64)], [(1,13),(2,14),(3,15),(4,16),(5,11),(6,12),(7,9),(8,10),(17,46),(18,47),(19,48),(20,45),(21,63),(22,64),(23,61),(24,62),(25,54),(26,55),(27,56),(28,53),(29,60),(30,57),(31,58),(32,59),(33,49),(34,50),(35,51),(36,52),(37,44),(38,41),(39,42),(40,43)]])

Matrix representation of C23.727C24 in GL10(𝔽5)

1000000000
0100000000
0010000000
0001000000
0000100000
0000010000
0000004000
0000000400
0000000040
0000000004
,
1000000000
0100000000
0040000000
0004000000
0000400000
0000040000
0000001000
0000000100
0000000010
0000000001
,
4000000000
0400000000
0010000000
0001000000
0000100000
0000010000
0000004000
0000000400
0000000040
0000000004
,
2000000000
0200000000
0000100000
0000010000
0010000000
0001000000
0000001000
0000000100
0000000340
0000002004
,
0100000000
1000000000
0003000000
0020000000
0000030000
0000200000
0000000330
0000002003
0000001002
0000000130
,
1000000000
0400000000
0010000000
0001000000
0000400000
0000040000
0000001000
0000000400
0000000040
0000000001
,
1000000000
0100000000
0001000000
0010000000
0000010000
0000100000
0000000100
0000001000
0000000004
0000000040

G:=sub<GL(10,GF(5))| [1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,4],[1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1],[4,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,4],[2,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,2,0,0,0,0,0,0,0,1,3,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,4],[0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,2,1,0,0,0,0,0,0,0,3,0,0,1,0,0,0,0,0,0,3,0,0,3,0,0,0,0,0,0,0,3,2,0],[1,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0] >;

C23.727C24 in GAP, Magma, Sage, TeX

C_2^3._{727}C_2^4
% in TeX

G:=Group("C2^3.727C2^4");
// GroupNames label

G:=SmallGroup(128,1559);
// by ID

G=gap.SmallGroup(128,1559);
# by ID

G:=PCGroup([7,-2,2,2,2,-2,2,2,560,253,120,758,723,794,185]);
// Polycyclic

G:=Group<a,b,c,d,e,f,g|a^2=b^2=c^2=f^2=g^2=1,d^2=c*a=a*c,e^2=a,a*b=b*a,e*d*e^-1=a*d=d*a,a*e=e*a,g*f*g=a*f=f*a,a*g=g*a,b*c=c*b,f*d*f=b*d=d*b,b*e=e*b,b*f=f*b,b*g=g*b,c*d=d*c,f*e*f=c*e=e*c,c*f=f*c,c*g=g*c,d*g=g*d,g*e*g=a*b*e>;
// generators/relations

Export

Character table of C23.727C24 in TeX

׿
×
𝔽